KF50 Base-Ported Pressure Filter

Metric dimensions in ().

Model No. of filter in photograph is KF501K10FD.

Filter Housing Specifications

Flow Rating:	Up to 100 gpm (380 L/min) for 150 SUS (32 cSt) fluids With 2" porting only, up to 150 gpm (570 L/min) for 150 SUS 32 cSt fluids
Max. Operating Pressure:	5000 psi (345 bar)
Min. Yield Pressure:	15,000 psi (1035 bar)
Rated Fatigue Pressure:	3500 psi (240 bar), per NFPA T2.6.1-1974
Temp. Range:	-20°F to 225°F (-29°C to 107°C)
Bypass Setting:	Cracking: 40 psi (2.8 bar) Optional Cracking: 50 psi (3.5 bar) Full Flow: 61 psi (4.2 bar)
Porting Base & Cap: Element Case:	Ductile Iron Steel
Weight of KF50-1K: Weight of KF50-2K: Weight of KF50-3K:	59.7 lbs. (27.1 kg) 80.7 lbs. (36.6 kg) 102.5 lbs. (46.5 kg)
Element Change Clearance:	8.50" (215 mm) for 1K; 17.50" (445 mm) for KK; 26.5" (673 mm) for 27K

Element Performance	Element	$\begin{array}{l} \textbf{Absolute Ratin}\\ \textbf{Using automated pa}\\ \textbf{B}_{x} \geq \textbf{75} \end{array}$	ng Per ISO 4572 , rticle counter (APC) co $\beta_x \ge 100$	A NFPA T3.10.8.8 alibrated per ISO 4402 $\beta_x \ge 200$	Abs. Rating N Using APC calibra $\beta_x(c) \ge 200$	wrt ISO 16889 ated per ISO 11171 $\beta_x(c) \ge 1000$	Dirt Holding Capacity gm		
information	К3	6.8	7.5	10.0	N/A	N/A	54		
	K10	15.5	16.2	18.0	N/A	N/A	44		
	KZ1	<1.0	<1.0	<1.0	<4.0	4.2	112		
	KZ3	<1.0	<1.0	<2.0	4.7	5.8	115		
	KZ5	2.5	3.0	4.0	6.5	7.5	86		
	KZ10	7.4	8.2	10.0	10.0	12.7	108		
	KZ25	18.0	20.0	22.5	19.0	24.0	93		
	KZX3	<1.0	<1.0	<2.0	4.7	5.8	40*		
	KZX10	7.4	8.2	10.0	10.0	12.7	49*		
	Element Collapse Rating:150 psid (10 bar) for standard elements 3000 psid (210 bar) for high crush (ZX) versions*Based on terminal pFlow Direction:Outside In 4.0" (100 mm) O.D. x 9.0" (230 mm) long								
Fluid Compatibility	Petroleu High Ir Pł Note: Cont. and Water	Type Fluid Im Based Fluids Water Content Ivert Emulsions Water Glycols hosphate Esters Skydrol act factory regardi Glycol Application	Appropriat All Paper (E) Z1, Z3, Z5, Z Z10, Z25 Z3, Z5, Z10, All Z Media Z3H.5, Z5H. ng use of E Media	e Schroeder Med and Synthetic (Z) 210, Z25 Z25 with EPR Seals, K 5, Z10H.5, Z25H.5 a in High Water Co	lia Media 3H and K10H E 5 and WH.5 ntent, Invert Em	Media For ulsion	more ormation, refer to d Compatibility: Resistant Fluids, les 19 and 20.		

64 SCHROEDER INDUSTRIES LLC

Base-Ported Pressure Filter KF50

Pressure	Eler Series	ment Part No.	Element selections are predicated on the use of 150 SUS (32 cSt) petroleum based fluid and a 40 psi (2.8 bar) bypass valve.						Element		
To 5000 psi	E Media	К3	1K3	2K3†	3K3		See I	MKF50		Based on	
		K10	1K10	2K10†	3K101	3K10	†	See Mł	<f50< td=""><td rowspan="2">Flow Rate</td><td></td></f50<>	Flow Rate	
		K25		1K25			2K25†				
		KZ1	1KZ1		2KZ	1†	31	<z1†< td=""><td></td><td></td><td></td></z1†<>			
(345 bar)	Z	KZ3	16	(Z3		2KZ3†		3KZ3†			
	Media	KZ5	1	KZ5		2KZ	51	3KZ5†			
		KZ10		1KZ10			ZKZ	OT 3KZ10			
		KZ25	I	1KZ25	1			2KZ25T	L		
	Flow	gpm 0	25	50 7	'5	100	125	15	50		
		(L/min) Ó	100	200	300	400	50	0 5	70		
tDouble a single KK	nd triple sta & 27K elen	cking of K-siz	e elements can be rep	placed by		ree	quires 2	" porting	(P32)		
			veiy.								
$\Delta \mathbf{P}_{\text{filter}} = \Delta$	$\Delta \mathbf{P}_{\text{housing}}$ +	$\Delta \mathbf{P}_{element}$	$\Delta \mathbf{P}_{\text{housing}}$			$\Delta \mathbf{P}_{elemen}$	t			Pressure	
∆ P _{filter} = <i>i</i> Exercise: Determine KF501KZ3P fluid.	∆ P _{housing} + ∆P at 50 gpr D5 using 200	$\Delta \mathbf{P}_{element}$ n (190 L/min) fo) SUS (44 cSt)	$\Delta P_{housing}$ or $KF50 \Delta P_{housing} for Fit (100) (200) (200)$	r fluids with sp ow (L/min)) (300) (400) (50	gr = 0.86:	$\Delta \mathbf{P}_{element} = \frac{\Delta \mathbf{P}_{element}}{EI. \ \Delta P \ fac}$	t flow x el x viscos tors @ 15 1K	ement ∆P ity factor 50 SUS (3. 2K	factor 2 cSt): 3K	Pressure Drop Information Based on	
$\Delta P_{\text{filter}} = 2$ Exercise: Determine KF501KZ3P fluid. Solution: $\Delta P_{\text{housing}} = 3$	△ P _{housing} + △P at 50 gpr D5 using 200 3.0 psi [.20 b	Δ P _{element} n (190 L/min) f) SUS (44 cSt) ar]	$\Delta P_{housing}$ or $KF50 \Delta P_{housing} for \frac{14}{12}$	r fluids with sp pw (L/min)) (300) (400) (50 	gr = 0.86:	$\Delta P_{element} = \frac{\Delta P_{element}}{EI. \Delta P fac}$ K3 K10 K25	t flow x el x viscos tors @ 1 <u>1K</u> .25 .09 02	ement ∆P ity factor 50 SUS (3. 2 <u>K</u> .12 .05 01	factor 2 cSt): .08 .03 01	Pressure Drop Information Based on Flow Rate and Viscosity	
$\Delta \mathbf{P}_{filter} = 2$ Exercise: Determine KF501KZ3P fluid. Solution: $\Delta \mathbf{P}_{housing} = 3$ $\Delta \mathbf{P}_{element} = 5$ $= 1$	Δ P housing + ΔP at 50 gpr D5 using 200 3.0 psi [.20 b 50 x .10 x (20 pr 190 x (.10÷5	$\Delta \mathbf{P}_{element}$ n (190 L/min) fr) SUS (44 cSt) ar] 0÷150) = 6.7 p 4.9) x (44÷32)	$\Delta P_{housing}$ or $KF50 \Delta P_{housing} for$ $(100) (200)$	r fluids with sp (L/min) (300) (400) (50 (300) (400) (50 (5) (400) (50) (50) (50) (50) (50) (50) (50) (gr = 0.86:	$\Delta \mathbf{P}_{element} = \frac{\Delta P_{element}}{EL \Delta P fac}$ K3 K10 K25 KZ1 KZ3 KZ5 KZ10	t flow x el x viscos tors @ 1: .25 .09 .02 .20 .10 .08 .05	ement ∆P ity factor 50 SUS (3. 	factor 2 c5t): 3K .08 .03 .01 .05 .03 .02	Pressure Drop Information Based on Flow Rate and Viscosity	
$\Delta P_{\text{filter}} = 2$ Exercise: Determine KF501KZ3P fluid. Solution: $\Delta P_{\text{housing}} = 3$ $\Delta P_{\text{element}} = 5$ $\Box P_{\text{total}} = 3$	Δ P housing + ΔP at 50 gpr D5 using 200 3.0 psi [.20 b 50 x .10 x (20 or 190 x (.10÷5 48 bar] 3.0 + 6.7 = 9. or	$\Delta P_{element}$ n (190 L/min) fr 0 SUS (44 cSt) ar] 0÷150) = 6.7 p 4.9) x (44÷32) 7 psi	$\Delta P_{housing}$ or $KF50 \Delta P_{housing} for$ $ia = ia =$	r fluids with sp (L/min) (300) (400) (50 (300) (400) (50 (400) (50) (50) (50) (50) (50) (50) (50) (gr = 0.86:)) (0.75) (0.50) d (0.25) 150	$\Delta P_{element} = \frac{\Delta P_{element}}{EL \Delta P fac}$ K3 K10 K25 KZ1 KZ3 KZ5 KZ10 KZ25 KZ10 If working	t flow x el x viscos tors @ 1 25 .09 .02 .20 .10 .02 .20 .10 .02 .02 .02 .02 .02 .02 .02 .02 .02 .0	ement ∆P ity factor 50 SUS (3. 2 <u>K</u> .12 .05 .01 .10 .05 .04 .03 .02 .11 of bars &	factor 2 cSt): 3K .08 .03 .03 .02 .02 .01 .07 L/min,	Pressure Drop Information Based on Flow Rate and Viscosity	

Sizing of elements should be based on element flow information provided in the Element Selection chart above.

Filter Series	No. of Elements†	Element Part No.	Seal Material	Porting	Dirt Alarm® (See Appendix A for complete list of options)	Filter Model	KF50
		K3 K10 K25		P = 1½" NPTF		Number Selection	
	1	KZ1 KZ3 KZ5		P32 = 2" NPTF	D = Pointer MS = Electric Cam Operated		
KF50		KZ10 KZ25	(Omit) = Buna N	$S = 1\frac{7}{8}$ "-12 SAE Straight (SAE-24)	D5 = Cartridge D5C = Cartridge in Cap		
Section 5, page 138 for Water	2	KM10 KM25 KM60	H = EPR	$F = 1\frac{1}{2}$ " SAE J518 4-Bolt Flange Code 62*	Electric Cartridge: MS5AC/DC/LC Family		
Service version.)	3	KM150 KM260 KW	V = Viton	O = Subplate**			
KFN50 (Non- bypass)		KZX3 KZX10 KZX25		B = ISO 228 G-1 ¹ / ₂ (1 ¹ / ₂ -11 BSPP)	D5 = Cartridge D5C = Cartridge in Cap MS5AC/DC/LC Family		
*Bolt th **O-ring	read depth .7! s included; fas	5" (19 mm). tening hardwa	re not included.	†Double and triple stacking replaced by single KK & 2	g of K-size elements can be 7K elements, respectively.		
$L = T_{fe}$ N = N	wo ¹ / ₄ " NPTF i male test por o-Element inc	nlet & outlet ts dicator***	X = BI G509 = Di op	ocked bypass valve*** rt alarm and drain pposite standard ***	See Appendix B for additional information on these options and	Other Available Options	
50 = 0 U = Te (L	ptional bypas est point insta ipstream)	s setting*** Illation in cap	6588 = М ор М = М	icro switch and drain pposite standard*** agnet Inserts	instructions on how to order.		

(upstream) UU = Test point installation in block (upstream and downstream)

***not available with KFN50

SCHROEDER INDUSTRIES LLC 65